Can OEE be Used to Reduce Operating Cost?

OEE or Overall Equipment Effectiveness measures manufacturing performance against perfection. It is regarded as the global benchmark for managing and improving manufacturing efficiency. Any deviation from perfection drives up operating cost. OEE looks at three different losses and multiplies them across to assess total losses. Those losses are:

Availability – This is a measure of downtime (both planned and unplanned)

Throughput – This measures rate loss against the theoretical maximum run rate

Yield – This measures the amount of efficiency lost due to quality issues

Each of these factors has a cost impact. There are measurable financial and other costs associated with having people at work, the lights on, and machines operating. Anytime these things are happening and you aren’t producing at theoretical maximum levels, you are suffering efficiency and financial losses. Most factories are operating at or below 60% OEE but have no idea. Additionally, most factories do not measure productivity, and many who do, use methods that exclude significant losses such as changeover times, start-ups, throughput loss and many others. Again, anytime you have people on the clock and product yet to be made, anything less than the theoretical max output is a loss…for whatever reason – controllable or uncontrollable. At the end of the day, all aspects of running your business are controllable; the only real question is: are you willing to do what it takes to “fix” something that is perceived as “uncontrollable”. I’ve worked with manufacturers who, for years, wrote off “bad raw material” as uncontrollable but have never talked with the supplier about fixing the problem or investigated sourcing with other suppliers. In almost all cases, uncontrollable is synonymous for “we don’t want to deal with it”.

The Logic

For a factory with a direct operating cost of $10M annually and an OEE of 60%, the total efficiency losses are 40%. Therefore 40% of the direct operating costs are also losses, or $4M in this case. At 100% efficiency, the operating cost would be $6M.

World-class execution is 85% OEE, which equates to a direct operating cost of $8.5M in the example above. For the same factory, there is a $2.5M savings opportunity for improving from 60% to 85% OEE. What would you do with an extra $2.5M dollars per year? Expand production? Pay bonuses? Acquire a new business? Buy a small yacht and sail around the world?

Achieving 85% OEE is challenging but attainable for the vast majority of manufacturers. Click the link below to receive a free report on how much savings opportunity you might have based on your direct operating costs and efficiency performance:

My Total Savings Opportunity

If you don’t know your OEE, we can get you up in going on Impruver in less than a month. It will help you track OEE by product, line, shift, team, and even individual. It’s a great tool for highlighting exactly where to focus improvement efforts. For the sake of the tool mentioned in the above link, input 60% as a reference point and see what you get for a savings opportunity if you’re unsure of your current OEE.

 

 

Advertisements

The 8 Lean Wastes and Their Potentially Disastrous Effects – Motion

Manuficient - Motion [Katrina]

Motion – any movement that takes time and / or effort that does not directly add value. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Motion to understand what causes it, how to see it, and how to eliminate it.

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Case Study:

In 2005, Hurricane Katrina broke the levees in New Orleans’ lower 9th ward, resulting in catastrophic flooding. Despite the desperate and obvious need for relief, local, state, and federal emergency response agencies failed to supply sufficient aide with any level of urgency. Officials deliberated, stalled, and wasted critical time deciding when, how, and rather or not to respond. An estimated 1,836 lives and $108 Billion were lost due to the flooding. It’s difficult to quantify exactly how much of this loss can be attributed to the poor emergency response; but we can all agree that the amount of time and effort wasted prior to providing aide was a complete disaster in itself.

Corrective Action:

During the event, aide, although debatably insufficient, began to arrive for some affected by the flood. Many people have fled the northern gulf coast to cities like Houston, Nashville, and others around the US – never to return home. Programs to help Katrina victims to resettle elsewhere sprang up around the United States. After Katrina, FEMA was granted authority and tools to respond to crisis more urgently, including the Post-Katrina Emergency Response Act (PKERA). This new system was tested a few years later during Hurricane Sandy and the results were markedly improved.

Interesting Fact:

All major studies concluded that the US Army Core of Engineers (USACE) were primarily responsible for the failing levees. However, they were granted immunity under the Flood Control Act of 1928. The USACE cited budgetary constraints for installing the insufficient levee system. This is one case where saving perhaps a few million dollars ending up costing thousands of lives and hundreds of billions of dollars in the end.

For more details on this case study, check out the Wikipedia article at the following link:

https://en.wikipedia.org/wiki/Hurricane_Katrina

Motion waste occurs in abundance in just about any manufacturing or supply chain operation. Anything from reaching across a table to grab the next unit to shuffling pallets in the warehouse to get everything to fit can be considered motion waste. It is nearly impossible to eliminate all motion waste but it can definitely be reduced greatly. Reducing motion waste reduces process cycle times resulting in an increase in throughput. The best way to measure motion waste is the perform a detailed breakdown of the work needed to execute a process called a Time & Motion Study. In this case, the more granular, the better. For example, a time & motion study output might look like this:

Manuficient - Motion Waste Chart

 

Observe how over 30% of the time spent processing this unit was wasted motion. This type of waste can be reduced by identifying the waste from time & motion studies on critical process steps and optimizing workstation design to increase efficiency. This method allows you to optimize for efficiency within a process step at a very technical and granular level; but can yield tremendous cost and lead time savings if you can increase throughput at the bottleneck step by 30%.

Impruver also helps you see motion waste. Motion waste reduces throughput, increases operating costs, and lengthens lead times. Impruver helps to motivate employees to reduce motion waste by highlighting achievements such as Raising the Bar (outperforming the previous standard). When motion waste is reduced, it can lead to the previously established standard being exceeded, at which time best-practices and operator recognition is distributed across your manufacturing network. This helps others to make progress toward creating breakthroughs in performance as well.

 

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

The 8 Lean Wastes and Their Potentially Disastrous Effects – Transporting

A worker operates a forklift to transport floor boards at a wood flooring factory in Huzhou
A worker operates a forklift to transport floor boards at a wood flooring factory in Huzhou, Zhejiang province July 13, 2012. REUTERS/Sean Yong

Transporting – the act of moving people, materials, or information from one place to another. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Transporting to understand what causes it, how to see it, and how to eliminate it.

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Study:

Based on data from the National EMS Information System (NEMSIS), the US national average time for an ambulance to arrive after an emergency call has been placed is 9.4 minutes. Just to level-set, the gold standard for ambulance arrival time is 8 minutes within 90% of the time. The data suggests that, on average, ambulances arrive 1.4 minutes late for an emergency call.

Additionally, the time to transport a patient back to the hospital to receive full treatment averaged 12.2 minutes in the dataset. This means that the time between the emergency call and the patient arriving at the hospital averaged almost 22 minutes in total.

Manuficient - Ambulance Arrival Time Data
Copyright 2016 Manuficient Consulting

 

Interesting Fact:

The chances of surviving cardiac arrest diminishes greatly after 5 or 6 minutes of waiting time. How many deaths or serious complications could be prevented if we could design an emergency medical system with an overall response time of less than 5 minutes?

For more information on this data, visit the NEMSIS at:

http://www.nedarc.org/

 

Transporting waste is abundant in just about any manufacturing or supply chain system. Since, for all practical purposes, multiple objects cannot occupy the same space at a time, transporting is an inevitable condition in the way we live, work, and play. One of the challenges to reducing transporting waste is that most methods of measuring productivity fail to highlight its existence. It’s important to measure delivery lead time from step to step within the factory and throughout the supply chain to help identify transporting waste; this also needs to be monitored on a continuous basis. Once you know to look for this type of waste, losses can fairly easily be measured and reduced in manufacturing or supply chain processes. For example, tools such as 5S, line layout, work cell design, and point-of-use supply (POUS) are all great approaches to minimize the waste of transporting within a factory.

Impruver also helps you see waste from transporting in the form of lost efficiency. In Impruver, this type of waste could either show up as downtime or rate losses. For example, if operators are having to travel across the factory to retrieve parts needed to perform a changeover, this entire time is captured under the planned downtime category. In this case, you might rearrange where items are being stored or staged in order to minimize transport time, changeovers, and efficiency losses due to planned downtime.

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

The 8 Lean Wastes and Their Potentially Disastrous Effects – Non-utilized Talent & Ideas

Final Launch of Challenger
The Space Shuttle Challenger lifts off Pad 39B at Kennedy Space Center, Florida, at 11:38 a.m., EST, January 28, 1986. The entire crew of seven was lost in the explosion 73 seconds into the launch. (AP Photo/NASA)

Non-utilized Talent & Ideas – all talent, ideas, and capabilities that are not effectively applied to facilitate execution. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Non-utilized Talent & Ideas to better understand what causes it, how to see it, and how to eliminate it. Goleansixsigma.com defines Non-utilized Talent & Ideas as “the concept that employees are not being utilized to their full capability or, conversely that they are engaged in tasks that would be more efficiently done by someone else. Non-Utilized Talent is one of the 8 Wastes which is also known as the waste of intellectual capital.”

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Case Study:

On a particularly cool day in Cape Canaveral, FL in 1986, the Space Shuttle Challenger was scheduled to launch. A few days before the launch, the team of the engineers who were working on the mission had advised the program’s management team that launching at 30 degrees would be very risky. The data that they had collected on the wax-based O-ring performance showed that significant integrity was lost under lower temperatures. The management team decided to launch anyway despite the warning of their engineers and the result was catastrophic. 73 seconds into the space shuttle’s flight, the O-rings failed and it exploded in mid-air. The price tag on this disastrous decision was 7 lives (one of which was supposed to be the first teacher in space) and about $1.5B including the flight mission, search and recovery, and the investigation.

NPR recently did a great story on Bob Ebeling, the engineer who came forward (risking his career) and tried to warn NASA of the danger associated with this launch. You can find the podcast at the link below:

NPR Story on Bob Ebeling

Corrective Action:

In response to this tragic incident, NASA re-designed the O-ring joints and implement an astronaut bail-out system in later space shuttle models. Evidence reveals that some of the passengers may have survived the explosion, until the shuttle crashed with the ocean after descent. Thus, lives may have been spared by allowing the astronauts to “bail out” prior to coming in contact with the earth.

Interesting Fact:

After the Challenger explosion, there were several changes put in place to prevent this type of issue from reoccurring. Unfortunately, many of these changes did not sustain in operation. In 2003, the Space Shuttle Columbia also exploded soon after launch, ending the lives of 7 more astronauts. The Columbia explosion occurred for reasons that would have been prevented by the changes that were put in place after the Challenger mission. This highlights the importance of operational discipline and ensuring that improvements are sustained.

For more details on this case study, check out the Wikipedia article at the following link:

https://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

Non-utilized Talent & Ideas is possibly the most abundant type of waste. It is the only one of the 8 wastes that is not directly a process waste but one of managment or intellectual capital. It is often caused by destructive internal politics and a general lack of respect for people. This type of waste is greatly reduced by practicing a true meritocracy; promoting highly competent people and systematically vetting improvement ideas, regardless of their source. I’ve created and used several great Idea Management and Execution Systems, all of which include regular idea review schedules, rigorous idea vetting, excellent feedback and communication loops, and incentives for submitting or executing improvement projects.

Impruver also helps you see waste from non-utilized talent & ideas in the form of lost efficiency. In Impruver, this type of waste could either show up as downtime, rate, or yield losses. The great thing about Impruver is that it promotes a culture of getting better everyday by highlighting personal bests, record breaking weeks, raising the bar (outperforming the standard) and other great achievements. This motivates your team to most effectively apply their talent and ideas to drive manufacturing execution.

 

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

The 8 Lean Wastes and Their Potentially Disastrous Effects – Waiting

Manuficient - Waiting [Herseys]

Waiting – time spent idle or unproductive until parts, materials, information or other inputs are made available. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Waiting to understand what causes it, how to see it, and how to eliminate it. Leanmanufacturingtools.org defines waiting as “the act of doing nothing or working slowly whilst waiting for a previous step in the process.”

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Case Study:

Leading into the Halloween of 1999, Hershey Foods lost over $150M in revenue due to a preventable mishap in supply chain execution. The company tried to “go live” on multiple supply chain management systems at the same time. In addition, they failed to follow the prescribed implementation plan provided by the software’s developers. The result was that even though the product had been produced, they were unable to “see” the project in the newly implemented management systems and subsequently, could not process orders. Their customers and consumers were left waiting for product that did not arrive, which cost Hersey’s $150M and their customers’ businesses also took a hit. Profits dropped 19% for Q3 of that year and continued to drop for Q4 due to lost credibility and damaged customer relationships.

Corrective Action:

Hershey’s then implemented an Electronic Data Interchange (EDI) system that allowed them much greater visibility over their supply chain, inventory, and critical customer data.

Interesting Fact:

The software’s developer estimated 48 months to correctly implement the supply chain management system but Hershey’s rushed the implementation for fear of how Y2K would affect the computer systems. As we’re all aware of now, Y2K had no effect on computer system operability; thus this fearful and rash decision was completely unfounded.

For more details on this case study, check out the CIO article at the following link:

http://www.cio.com/article/2440386/supply-chain-management/supply-chain—hershey-s-bittersweet-lesson.html

Waiting is a waste that frequently occurs in any manufacturing operation. This is often caused by either poorly balanced work areas or unreliable processes; and sometimes both. The key is to be able to spot waiting waste as it’s happening and take quick action to eliminate it by getting to the root cause and preventing it from happening again. Fortunately, waiting is one of the easiest types of waste to see as it’s happening. It only takes one to be present, engaged, and seeking waiting waste. A great tool for this is to install a high-visibility indicator that detects movement. When the expected movement is not occurring, it can be expected that the process step is waiting and an alert can be provided. Continuous Improvement happens when people actively seek out opportunities to reduce and prevent waiting waste whenever it occurs. This happens when the appropriate cultural behaviors are being promoted.

Impruver also helps you see waiting waste in the form of lost efficiency. In Impruver, waiting waste would either show up as Rate Loss (if the line is running but below standard rate) or Unplanned Downtime Loss (if the line is stopped and the stoppage is recorded). This enables you to not only capture losses but also to quantify the financial impact that waiting waste is having on your business.

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

How to Do a Stress Free Lean Implementation

Manuficient - Top Performers

Lean is said to be the “Machine that Changed the World,” which a fantastic book written by Jim Womack, Dan Jones and Daniel Roos. According to Wikipedia, “Lean manufacturing or lean production, often simply “lean“, is a systematic method for the elimination of waste (“Muda“) within a manufacturing system.” We are now learning that Lean has applicability across far more industries than just manufacturing such as healthcare, finance, education, and many others. However, implementing lean has been a major challenge for business leaders across all sectors, including manufacturing. A study released by McKinsey stated that “70% of Continuous Improvement initiatives fail”. This is a striking statistic considering how popular Lean and other Continuous Improvement initiatives are.

If you go into any of those factories where Lean has failed (and even some where it has succeeded), you’ll quickly find that it generally leaves a bad taste in people’s mouths. Be it because some companies have gutted workforces and administrative jobs under the guise of Lean or that people had to give up things that they held sacred in the name of cutting waste…many people harbor a disdain for Lean. How did an initiative designed to improve product and process quality turn into such a reviled and despised creature?

In conducting and studying many examples of Lean implementations I’ve determined that three key ingredients are needed for success. Those ingredients are:

  1. Technical Expertise. Lean isn’t that hard to learn but somebody needs to know what they’re doing in the beginning at least. This could be an inside or outside person or group. Eventually, everyone needs a strong lean competency and it needs to become a requirement for staying with the company or getting promoted
  2. Commitment. Leaders need to visibly show their commitment and make decision consistent with a Lean culture.
  3. Motivation. If the people at the top or bottom don’t want to do it – it won’t happen. A Lean implementation requires substantial changes in behaviors, the slaughter of sacred cows, and debilitating power struggles. It’s not easy for anybody.

In all reality, the last item trumps the previous two. Let’s face it, people will eventually do what they’re motivated to do as long as management gets the heck out of the way. Do you really need an engineering degree to do 5S or make a few changes to reduce waste and inefficiency? The answer is no. So …the easy way to implement Lean is by pairing the implementation with things people are motivated to do such as:

  • Look good in front of their bosses and peers
  • Get recognized for a job well done
  • Compete and win
  • Have input on the way things are done
  • Prove themselves by getting results
  • Be judged fairly
  • Help others
  • Be a valued contributor to the business
  • Remain gainfully employed
  • …the list goes on and on.

So, to implement Lean, you need to motivate people to eliminate waste and be more efficienct; then give them the tools and support to do what they will be super-motivated to do. To do this, follow these steps:

Step 1Implement OEE. This will tell you and everyone else exactly how much efficiency loss you have, what types of losses you have, and where the biggest opportunities for improvement exist, etc. OEE will serve as your scoreboard for how good everybody actually and undoubtably is. It also puts everyone on the same playing field in terms of measuring productivity. [Week 1 – 8 but continue tracking perpetually]

Step 2Start highlighting success stories for people doing things better. Share Personal Records, Record Breaking Weeks for the team, Best-Practices, Top Performers for the Day or Week, and so on. This will create a culture that feels like winning…and send a message that winning means getting better, which means…increasing efficiencies. All of a sudden, getting better is starting to feel “good” and perhaps even “fun and exciting”. [Week 6 – 15 but continue into perpetuity]

Step 3Provide a continuous stream of tools and techniques for getting better. Teach people root cause analysis, value stream mapping, SMED, kaizen events and anything else they are clamoring to know by this point in the process. You should also consider taking engineers, managers, and key personnel to other factories who have a really good Lean program so they can benchmark ideas. These factories love to show off the great work they’ve done to implement what a vast majority of companies struggle with. [Week 10 on]

That’s it. Pretty easy right? Well there are always varying levels of depth and complexity of tools that can be applied but you can cross those bridges when you get to them. It’s important to follow these three steps in sequence and allow time for each step to take hold in the organization. Most companies try to implement lean by doing step 3 and then step 1 or they just start of with a massive cutting of headcount. Implementing OEE is not as easy as this article makes it sound and neither are the other 2 steps. Fortunately there’s a tool that virtually automates the first 2 (and most difficult) steps called the Factory Operating System (fOS) at www.factoryoperatingsystem.com. This is the best tool out there for implementing Lean or any other Continuous Improvement initiative. In this system, calculating and tracking OEE requires less than a minute per production run to input data and it spits out OEE by line, shift, person, team, product, timeframe, or any other way you want to slice it. It also highlights top performers, record breaking weeks, personal records, and other success stories across your operations chain of command. It’s super-powerful and it’s free, which makes it really great!

Implementing Lean can be a great step toward reducing operating costs, increasing capacity, reducing lead time, improving product quality among many other wonderful things. Don’t make the mistakes most companies make by failing to motivate your people before slamming them with tools, jargon, and complex ideas that will just scare them away. Let the motivation come first, then they will be a) creating their own tools and b) asking you for more tools and techniques to get their systems to operate more efficiently. This way you create a demand for Lean instead of pushing it on people and creating a painful experience for everyone that probably won’t even sustain results. A manufacturing efficiency expert such as those at Manuficient can help you to implement Lean in a non-abrasive way that systematically encourages your people to do better everyday.

fOS Lead Capture2PPM Lead Capture2

Engage with us:

Subscribe | Request Material | Schedule a Call | Request a Proposal  

Connect with us:

Facebook | Twitter | Linkedin | Google+ | Blog

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

How to Implement OEE in One Day

Manuficient - Excellence Compass

OEE (or Overall Equipment Effectiveness) is the ultimate tool for measuring and eliminating process waste. Wikipedia defines it as “a hierarchy of metrics developed by Seiichi Nakajima[1] in the 1960s to evaluate how effectively a manufacturing operation is utilized.” OEE combined with rigorous process improvement efforts can drive significant cost savings, reduce stress of daily operations, and increase manufacturing capacity. Simply put, you’re not doing Continuous Improvement or Lean if you’re not using OEE. The metric itself is taken by multiplying Availability (%) x Rate Attainment (%) x Yield Attainment (%).

To implement OEE effectively, you need to track each of these indicators on a continuous basis and perform the OEE calculation for a line, shift, factory, or entire manufacturing network on the interval that you see fit. Here are a few steps to implement OEE:

  1. Capture the % Availability. This is the efficiency lost while the line is not in operation (but the labor force is on the clock). Create a spreadsheet that allows line operators to input the time it takes to start up the line (from clock-in to steady state). Also capture other planned downtimes such as changeovers and shutdown times. Finally, capture each unplanned downtime loss as well.
  2. Capture the % Yield Attainment. This is a measure of the efficiency lost due to producing sub-par quality product. This calculation is done simply by taking the total good units produced divided by the total units produced.
  3. Capture % Rate Attainment. This is essentially the efficiency lost while running less than the maximum possible run rate. To capture this this, develop maximum theoretical run rates for each product on each production line. This should be done by an Industrial Engineer or trained professional. If you don’t have one on staff, you can contract someone to do it or use what I call the maximum empirically demonstrated rate, which is the fastest rate the line has demonstrated in it’s history for the given product. From there, track your total throughput and divide by your theoretical max rate to get your % total losses. Then subtract out % Availability and % Yield Losses. The remaining losses are rate losses.

Then multiply the three indicators across and the result is your OEE, which is a measure of perfection. 100% OEE represents zero efficiency losses. Once you have began tracking these metrics on an ongoing basis, you can aggregate this data to calculate your OEE anytime you want. The more frequently you can report this information, the more actionable the metric is for you. You certainly don’t want to wait weeks or months to find out there is a serious problem; but daily reporting is usually sufficient. Reporting by shift is even better.

With all of that said, the best way I’ve seen to implement OEE is a tool called Impruver at www.impruver.com. It’s the best free tool out there and it calculates and reports OEE for you by product, line, shift, and even team or individual team members. You could simply have your operators enter each production run into the system and the tool does the rest. It takes less than a minute to enter a production run. It even sets your theoretical max rates for you based on your best demonstrated rate. Then it updates the standard automatically when a run is entered that exceeds the previously established rate. In other words, you don’t have to set or update production standards – the tool does it all for you. It’s great!

 

OEE is the benchmark for measuring factory performance and can be used across all industries to highlight areas that can be made more efficient. It’s a metric that can be used to drive substantial cost savings along with targeted process improvements.

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.