The 8 Lean Wastes and Their Potentially Disastrous Effects – Motion

Manuficient - Motion [Katrina]

Motion – any movement that takes time and / or effort that does not directly add value. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Motion to understand what causes it, how to see it, and how to eliminate it.

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Case Study:

In 2005, Hurricane Katrina broke the levees in New Orleans’ lower 9th ward, resulting in catastrophic flooding. Despite the desperate and obvious need for relief, local, state, and federal emergency response agencies failed to supply sufficient aide with any level of urgency. Officials deliberated, stalled, and wasted critical time deciding when, how, and rather or not to respond. An estimated 1,836 lives and $108 Billion were lost due to the flooding. It’s difficult to quantify exactly how much of this loss can be attributed to the poor emergency response; but we can all agree that the amount of time and effort wasted prior to providing aide was a complete disaster in itself.

Corrective Action:

During the event, aide, although debatably insufficient, began to arrive for some affected by the flood. Many people have fled the northern gulf coast to cities like Houston, Nashville, and others around the US – never to return home. Programs to help Katrina victims to resettle elsewhere sprang up around the United States. After Katrina, FEMA was granted authority and tools to respond to crisis more urgently, including the Post-Katrina Emergency Response Act (PKERA). This new system was tested a few years later during Hurricane Sandy and the results were markedly improved.

Interesting Fact:

All major studies concluded that the US Army Core of Engineers (USACE) were primarily responsible for the failing levees. However, they were granted immunity under the Flood Control Act of 1928. The USACE cited budgetary constraints for installing the insufficient levee system. This is one case where saving perhaps a few million dollars ending up costing thousands of lives and hundreds of billions of dollars in the end.

For more details on this case study, check out the Wikipedia article at the following link:

https://en.wikipedia.org/wiki/Hurricane_Katrina

Motion waste occurs in abundance in just about any manufacturing or supply chain operation. Anything from reaching across a table to grab the next unit to shuffling pallets in the warehouse to get everything to fit can be considered motion waste. It is nearly impossible to eliminate all motion waste but it can definitely be reduced greatly. Reducing motion waste reduces process cycle times resulting in an increase in throughput. The best way to measure motion waste is the perform a detailed breakdown of the work needed to execute a process called a Time & Motion Study. In this case, the more granular, the better. For example, a time & motion study output might look like this:

Manuficient - Motion Waste Chart

 

Observe how over 30% of the time spent processing this unit was wasted motion. This type of waste can be reduced by identifying the waste from time & motion studies on critical process steps and optimizing workstation design to increase efficiency. This method allows you to optimize for efficiency within a process step at a very technical and granular level; but can yield tremendous cost and lead time savings if you can increase throughput at the bottleneck step by 30%.

Impruver also helps you see motion waste. Motion waste reduces throughput, increases operating costs, and lengthens lead times. Impruver helps to motivate employees to reduce motion waste by highlighting achievements such as Raising the Bar (outperforming the previous standard). When motion waste is reduced, it can lead to the previously established standard being exceeded, at which time best-practices and operator recognition is distributed across your manufacturing network. This helps others to make progress toward creating breakthroughs in performance as well.

 

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.

The 8 Lean Wastes and Their Potentially Disastrous Effects – Inventory

Inventory – any materials or other resources stored or staged until demanded. In this series titled “The 8 Lean Wastes and Their Potentially Disastrous Effects”, we examine case studies for when companies, government organizations, or entire industries have allowed a specific type of waste to escalate to a disastrous effect. In this post, we review the waste of Inventory to understand what causes it, how to see it, and how to eliminate it. Lean.org defines inventory as “materials (and information) present along a value stream between processing steps.”

Jump to:

The 8 Wastes and Their Potentially Disastrous Effects:

Defects | Overproduction | Waiting | Non-utilized Talent & Ideas | Transportation | Inventory | MotionExcessive Processing

Case Study:

In 2007, Toyota issued a massive recall that affected 9 Billion vehicles worldwide. The recall was triggered by several reports of gas pedals “sticking” and causing unintended acceleration. At the time of the incident, dealerships across the US were holding substantial amounts of inventory, which could not be sold until they were all serviced to minimize the risk of further unintended acceleration issues. A study was conducted to estimate the losses associated with all of this inventory that was placed on “hold”, which revealed that dealerships were losing the staggering amount of $2.5 Billion per month in combined income.

Corrective Action:

In response to this issue, Toyota conducted an investigation to identify the root cause of the unintended acceleration and concluded that the configuration between the floor mat and the gas pedal was defective. They also began to experiment with an alternative supply chain model with the Toyota Scion where a base unit would be built to about 70% at the factory, then buyers would be allowed to customize how the vehicle would be finished. Finally, the base unit would be shipped to the buyer’s local dealer to complete the final manufacturing steps; a process known as Late-Stage Customization. This kept inventory low for the Scion at the dealerships and allowed consumers more control over the features and functionality that would be included with their vehicle. Unfortunately, the Scion did not perform well in the market; however, I don’t think the supply chain model was the problem. It simply isn’t a very good looking car.

Interesting Fact:

Even though Toyota distributes vehicles all over the world, the only reports of unintended acceleration came from the United States. Also, there was never a definitive conclusion for a mechanical failure that was causing the problem. However, once the floor mat / gas pedal configuration was changed, no further issues were reported.

For more details on this case study, check out the 24/7 Wall Street article at the following link:

http://247wallst.com/autos/2010/01/29/toyota-dealers-face-2-5-billion-monthly-loss/

This case study exposes one of the many major problems with building and carrying inventory. Building inventory has the same issue issue as batching, which is a form of inventory in itself. When there is a quality defect that needs to be contained, many times the entire batch needs to be recalled and investigated due to limited granularity in traceability.  This requires the manufacturer to cast a wide net instead of being able to pinpoint the specific units that are affected by the defect.

Another major issue with carrying inventory is that it enables poor manufacturing execution and erodes operational discipline. Part of the equation for determining how much inventory you need is how unreliably your factory performs. In other words, being unreliable means you need to maintain higher inventories to meet service expectations. The path of least resistance is to build inventory as opposed to addressing your factory’s reliability issues. A little trick to kicking off a lean implementation is to cut your finished inventory gradually and challenge your teams to maintain service levels with lower inventory stocks. This will require improving factory reliability and becoming more lean in the process. Finally, inventory hurts your factory’s lead time on special order and rush items. This is because orders often need to wait in inventory buffers in between process steps before the next value-added step can be completed.

Impruver also helps you see waste from inventory, which often manifests itself in the form of unreliability. In Impruver, unreliability shows up as downtime, rate, and yield losses. By addressing these issues, you can increase plant reliability and subsequently reduce safety stocks. When inventory is reduced, working capital is freed up to be invested in other more important matters. Impruver also allows you to quickly estimate the savings to be gained in just one click by driving out efficiency losses. This powerful functionality is made available to everyone from the shop-floor up to be used for justifying continuous improvement ideas.

 

Copyright © Calvin L Williams blog at calvinlwilliams.com [2015]. Unauthorized use and/or duplication of this material without express and written permission from this blog’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Calvin L Williams with appropriate and specific direction to the original content.